If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18b^2+150b+168=0
a = 18; b = 150; c = +168;
Δ = b2-4ac
Δ = 1502-4·18·168
Δ = 10404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10404}=102$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-102}{2*18}=\frac{-252}{36} =-7 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+102}{2*18}=\frac{-48}{36} =-1+1/3 $
| -18+-6=6(1+3k) | | 80-3x=x | | 3n+2=6n–16 | | (13x-36)+(x)=90 | | 6t-2=15 | | 3x/2-2x/3-18=0 | | 12-8x=4+7x | | 20–2o=o–7 | | 4s-45=15 | | 2x-8x+56=2x+40 | | 2g+1=25g= | | a÷3+4=15 | | 3(x+2)=62 | | 6+b=2b–12 | | 7n–2=5n+6 | | 3x-220=3x-220 | | |x-4|+10=-2 | | 75-3.50x=5 | | 8(x-3)+15=54 | | 3x/2-2x/3=18 | | 7x+21=-6(x+3) | | 7x-12=-3x-4 | | 75-3.50x=65-3.20 | | 75-3.50x=65-3X20 | | 4x+3=5x−3 | | 1)-1+5n=-5+7n | | 6(5-x)-3(2x+7)=117 | | |4x+3|=5x−3 | | 3.5+2.5=16a | | 75-3.50x=65-3(20) | | x=-22/5 | | 75-3.50x=65-3 |